

Fig. 2. The unit cell of the title compound looking down the b axis. C, O and N atoms are represented by crossed, dashed, and dotted circles respectively. Broken lines represent hydrogen bonds.

that in all the reported similar structures, where N1 is involved in forming an intermolecular hydrogen bond with the neighbouring carbonyl O atom(s). This shows that the presence of the water molecule in the title compound has totally altered its hydrogen bonding.

We thank Dr Y. S. Sadanandam and Dr (Mrs) Meera Shetty, Organic Chemistry Division, IICT, Hyderabad, for supplying the compound, and Miss Madhavi Bhogaraju for assistance.

#### References

- BERNTSSON, P. & CARTER, R. E. (1981). Acta Pharm. Suec. 18, 221–225.
- DUAX, W., WEEKS, C. M. & ROHRER, D. C. (1976). Top. Stereochem. 9, 271–283.
- FONSECA, I., MARTÍNEZ-CARRERA, S. & GARCÍA-BLANCO, S. (1986). Acta Cryst. C42, 1792–1794.
- FORTIER, S., FRASER, M. E., MOORE, N. J. PARK, Y. S., WHITNEY, R. A. & MARKS, G. S. (1985). Acta Cryst. C41, 411-413.
- FOSSHEIM, R. (1985). Acta Chem. Scand. Ser. B, 39, 785-790.
- FOSSHEIM, R. (1986). J. Med. Chem. 29, 305-307.
- FOSSHEIM, R., SVARTENG, K., MOSTAGD, A., ROMMING, C.,
- SHEFTER, E. & TRIGGLE, D. J. (1982). J. Med Chem. 25, 126-131. HEMPEL, A. & GUPTA, M. P. (1978). Acta Cryst. B34, 3815-3817.
- JANIS, R. A. & TRIGGLE, D. J. (1983). J. Med. Chem. 26, 775-785.
- KOKUBUN, S. & REUTER, H. (1984). Proc. Natl Acad. Sci. USA, 81, 4824–4827.
- KRAJEWSKI, J. W., URBANCZYK-LIPKOWSKA, Z. & GLUZINSKI, P. (1977a). Acta Cryst. B33, 2967–2969.
- KRAJEWSKI, J. W., URBANCZYK-LIPKOWSKA, Z. & GLUZINSKI, P. (1977b). Cryst. Struct. Commun. 6, 787-791.
- LANGS, D. A. & TRIGGLE, D. J. (1985). Mol. Pharmacol. 27, 544-548.
- Nardelli, M. (1983). Comput. Chem. 7, 95-98.
- SCHAUER, C. K., ANDERSON, O. P., NATALE, N. R. & QUINCY, D. A. (1986). Acta Cryst. C42, 884–886.
- SHELDRICK, G. M. (1990). SHELXTL-Plus. Revision 4.11/V. Siemens Analytical X-ray Instruments, Inc., Application Laboratory, Single Crystal, Siemens AG, AUT V353, Karlsruhe, Germany.
- TAMAZWA, K., ARIMA, H., KOJIMA, T., ISOMURA, Y., OKADA, M., FUJITA, S., FURUYA, T., TAKENAKA, T., INAGAKI, O. & TERAI, M. (1986). J. Med. Chem. 29, 2501–2511.
- TRIGGLE, A. M., SHEFTER, E. & TRIGGLE, D. J. (1980). J. Med. Chem. 23, 1442-1445.
- WANG, S. D., HERBETTE, L. G. & RHODES, D. G. (1989). Acta Cryst. C45, 1748-1751.

Acta Cryst. (1992). C48, 1630-1633

## Structure of $5\beta$ , $10\alpha$ , $10\beta$ -Triethylthebaine Hydrochloride

BY R. H. WOUDENBERG, T. S. LIE, H. VAN KONINGSVELD AND L. MAAT

Laboratory of Organic Chemistry and Catalysis, Delft University of Technology, Julianalaan 136, 2628 BL Delft, The Netherlands

(Received 18 November 1991; accepted 21 January 1992)

Abstract. (-)-6,7,8,14-Tetradehydro-4,5 $\alpha$ -epoxy-5 $\beta$ ,10 $\alpha$ ,10 $\beta$ -triethyl-3,6-dimethoxy-17-methylmorphinan hydrochloride, C<sub>25</sub>H<sub>34</sub>NO<sub>3</sub><sup>+</sup>.Cl<sup>-</sup>,  $M_r$  = 432.00, monoclinic, P2<sub>1</sub>, a = 9.304 (2), b = 10.987 (2), c = 11.833 (2) Å,  $\beta = 109.65$  (1)°, V = 1139.2 Å<sup>3</sup>, Z = 2,  $D_x = 1.26$  g cm<sup>-3</sup>,  $\lambda$ (Mo K $\alpha$ ) = 0.71073 Å,  $\mu =$ 1.986 cm<sup>-1</sup>, F(000) = 464, T = 293 K, R = 0.064 for 2966 observed reflections. The piperidine ring is in a chair conformation. In contrast to other morphinan derivatives, the N-methyl group is in an axial position. Apparently, the ethyl group at the  $10\beta$  position forces the *N*-methyl group into this position.

**Introduction.** Compounds obtained through appropriate modification of the Diels–Alder adducts of the opium alkaloid (–)-thebaine (1) are well known for their high analgesic potency (Bentley, 1971). In order to investigate the influence of a  $5\beta$ -alkyl substituent on the course of the Diels–Alder reaction and its influence on the analgesic potency of the adducts,

0108-2701/92/091630-04\$06.00

© 1992 International Union of Crystallography

thebaine (1) was deprotonated, employing 3.2 equivalents of butyllithium, and reacted with diethyl sulfate to give the 5 $\beta$ -alkyl substituted thebaine analogues (Boden, Gates, Ho & Sundararaman, 1982; Woudenberg, Lie & Maat, 1990). Two products were obtained in a ratio of 6:1 (high performance liquid chromatography) (Woudenberg, Oosterhoff, Lie & Maat, 1992), namely 5 $\beta$ ,10 $\alpha$ diethylthebaine (3) and 5 $\beta$ ,10 $\alpha$ ,10 $\beta$ -triethylthebaine (4). In the <sup>1</sup>H NMR spectrum of (4), H(16)<sub>ax</sub> was



H(15)<sub>eq</sub> 0.40 p.p.m. downfield. shifted and 0.49 p.p.m. upfield, whereas the geminal coupling of H(16) changed from approximately 13 to 14.5 Hz, compared to 5 $\beta$ -ethylthebaine (2). Neither <sup>1</sup>H NMR nor <sup>13</sup>C NMR could provide us with sufficient information about the exact conformation of the piperidine moiety. Therefore, we performed a singlecrystal X-ray analysis of (4).HCl, which gave unambigous proof for the chair conformation of the piperidine ring with the N-methyl substituent in an axial position. To our knowledge, this is the first reported single-crystal X-ray study of a morphinan hydrochloride with an axial methyl group. The N-methyl group is usually found in an equatorial position (Gylbert, 1973; Darling, Kolb, Mandel & Mandel, 1982).

Experimental. The title compound was synthesized in our laboratory starting from natural (-)-thebaine with known absolute configuration (Woudenberg, Oosterhoff, Lie & Maat, 1992). Crystals were grown from ethanol/diethyl ether; m.p. 508-510 K (dec.);  $D_m$  not measured. A crystal of dimensions  $0.40 \times$  $0.25 \times 0.25$  mm was used for data collection on an Enraf-Nonius CAD-4 diffractometer with graphitemonochromated Mo  $K\alpha$  radiation at room temperature using the  $\omega/\theta$ -scan mode [width = (0.85 +

 $(0.35\tan\theta)^{\circ}$  to a 2 $\theta$  maximum of 30°. 3475 independent reflections were measured within the range  $0 \le h$  $\leq 13, 0 \leq k \leq 15, -16 \leq l \leq 16$  of which 2970 with I  $\geq 1.0\sigma(I)$  were used for all calculations. Three standard reflections were measured every 2 h of X-ray measuring time. No decay was detected. Cell constants were refined from 25 reflections in the range 12  $< \theta < 14^{\circ}$ . Lorentz and polarization corrections were applied; no corrections were made for absorption. The structure was solved by direct methods using MULTAN (Germain, Main & Woolfson, 1971). Full-matrix least-squares refinement on F of anisotropic heavy atoms and non-methyl H atoms with fixed isotropic thermal parameters (methyl H atoms were not included) carried out using XRAY72 (Stewart, Kruger, Ammon, Dickinson & Hall, 1972). The final cycle of refinement included 319 variable parameters and converged to R = 0.064, wR = 0.063with w = 1, S = 0.97, maximum shift/e.s.d. = 0.6 and average shift/e.s.d. = 0.08 for 2966 observed reflections (four strong low-order reflections left out). The final  $\Delta F$  map showed some residual electron density near the Cl atom (~0.45 e Å<sup>-3</sup>) and at positions  $(\leq 0.40 \text{ e} \text{ Å}^{-3})$  where some methyl H atoms might be expected;  $\Delta \rho_{\min} = -0.40 \text{ e} \text{ Å}^{-3}$ . Atomic scattering factors were provided by XRAY72. Dispersion factors were taken from International Tables for X-ray Crystallography (1974, Vol. IV, p. 166).

Discussion. The molecular structure is shown in Fig. 1, together with the atom numbering. The final atomic parameters are listed in Table 1.\* Bond lengths and bond angles are given in Table 2. As can be seen from Fig. 1, the piperidine ring is in a chair conformation, which is usual for morphinans. The average torsion angle in the ring is 55.5° with minimum and maximum values of 50.4 [N(17)-C(16)-C(15)-C(13)] and  $60.0^{\circ}$  [C(13)-C(14)-C(9)-N(17)], respectively. The N-methyl group is in an axial position, which differs from the equatorial position usually found in other morphinan hydrochlorides (Gylbert, 1973; Darling, Kolb, Mandel & Mandel, 1982). Apparently, the N-methyl group is forced into an axial position by the introduction of an ethyl group at the  $10\beta$  position. Thus, the changes in the <sup>1</sup>H NMR spectrum may be explained by the change of the position of the lone pair of the N atom (Crabb & Katritzky, 1984). Protons H(16) are now gauche to the N-atom lone pair. This position of the lone pair influences the geminal coupling

<sup>\*</sup> Lists of structure factors, anisotropic thermal parameters, H-atom coordinates, and bond lengths and angles involving H atoms have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55070 (18 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: AL0550]

| Table | 1.           | Posit  | ional  | pare | ameters | of | non-H   | atoms  | and |
|-------|--------------|--------|--------|------|---------|----|---------|--------|-----|
| eq    | <i>jui</i> v | valent | isotro | pic  | thermal | ра | rameter | rs (Ų) |     |

| $U_{eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$ |            |             |            |          |  |  |
|------------------------------------------------------------------------------------|------------|-------------|------------|----------|--|--|
|                                                                                    | x          | у           | z          | $U_{eq}$ |  |  |
| C1                                                                                 | 0.8411 (2) | -0.11297†   | 1.0494 (2) | 0.109    |  |  |
| C(1)                                                                               | 0.3478 (5) | 0.2596 (4)  | 0.7218 (4) | 0.039    |  |  |
| C(2)                                                                               | 0.2305 (5) | 0.2625 (4)  | 0.6117 (4) | 0.038    |  |  |
| CÌÌ                                                                                | 0.2561 (4) | 0.2424 (4)  | 0.5026 (4) | 0.033    |  |  |
| C(4)                                                                               | 0.4046 (4) | 0.2137 (4)  | 0.5098 (3) | 0.030    |  |  |
| C(5)                                                                               | 0.6274 (4) | 0.1861 (4)  | 0.4683 (3) | 0.030    |  |  |
| ció                                                                                | 0.6989 (5) | 0.3070 (4)  | 0.4548 (4) | 0.033    |  |  |
| C(7)                                                                               | 0.8100 (5) | 0.3603 (4)  | 0.5443 (4) | 0.037    |  |  |
| C(8)                                                                               | 0.8542 (4) | 0.3163 (5)  | 0.6673 (4) | 0.037    |  |  |
| C(9)                                                                               | 0.7869 (4) | 0.1944 (5)  | 0.8209 (4) | 0.036    |  |  |
| C(10)                                                                              | 0.6389 (4) | 0.2456 (5)  | 0.8418 (3) | 0.037    |  |  |
| C(11)                                                                              | 0.4972 (4) | 0.2313 (4)  | 0.7287 (3) | 0.032    |  |  |
| C(12)                                                                              | 0.5157 (4) | 0.2018 (4)  | 0.6210 (3) | 0.027    |  |  |
| C(13)                                                                              | 0.6589 (4) | 0.1546 (4)  | 0.6036 (3) | 0.028    |  |  |
| C(14)                                                                              | 0.7850 (4) | 0.2217 (4)  | 0.6953 (3) | 0.031    |  |  |
| C(15)                                                                              | 0.6702 (5) | 0.0160 (4)  | 0.6263 (4) | 0.038    |  |  |
| C(16)                                                                              | 0.6872 (6) | -0.0140 (5) | 0.7542 (5) | 0.044    |  |  |
| N(17)                                                                              | 0.8109 (4) | 0.0571 (4)  | 0.8421 (4) | 0.045    |  |  |
| C(18)                                                                              | 0.1319 (6) | 0.1744 (7)  | 0.2996 (5) | 0.057    |  |  |
| C(19)                                                                              | 0.6686 (6) | 0.0897 (5)  | 0.3905 (4) | 0.040    |  |  |
| C(20)                                                                              | 0.8401 (6) | 0.0765 (6)  | 0.4140 (5) | 0.057    |  |  |
| C(21)                                                                              | 0.7319 (7) | 0.4417 (5)  | 0.3090 (5) | 0.060    |  |  |
| C(22)                                                                              | 0.6702 (6) | 0.3854 (6)  | 0.8607 (5) | 0.051    |  |  |
| C(23)                                                                              | 0.5641 (7) | 0.4587 (6)  | 0.9078 (5) | 0.065    |  |  |
| C(24)                                                                              | 0.6140 (6) | 0.1868 (6)  | 0.9524 (4) | 0.052    |  |  |
| C(25)                                                                              | 0.7480 (7) | 0.2079 (8)  | 1.0719 (4) | 0.073    |  |  |
| C(26)                                                                              | 0.9687 (6) | 0.0227 (7)  | 0.8422 (5) | 0.064    |  |  |
| O(1)                                                                               | 0.1377 (3) | 0.2582 (4)  | 0.3965 (3) | 0.046    |  |  |
| O(2)                                                                               | 0.4583 (3) | 0.1964 (3)  | 0.4166 (2) | 0.034    |  |  |
| 0(3)                                                                               | 0 6509 (4) | 0.3420 (3)  | 0.3379 (3) | 0.042    |  |  |

† Parameter kept fixed during refinement.

Table 2. Bond lengths (Å) and bond angles (°)

| $\begin{array}{c} C(1) - C(2) \\ C(1) - C(1) \\ C(2) - C(3) \\ C(3) - C(4) \\ C(3) - O(1) \\ C(4) - O(12) \\ C(4) - O(2) \\ C(5) - C(6) \\ C(5) - C(6) \\ C(5) - C(13) \\ C(5) - C(13) \\ C(5) - C(19) \\ C(5) - O(2) \\ C(6) - O(3) \\ C(6) - O(3) \\ C(7) - C(8) \\ C(8) - C(14) \\ C(9) - C(10) \\ C(14) \\ \end{array}$ | 1.390 (5)<br>1.400 (6)<br>1.406 (7)<br>1.392 (6)<br>1.375 (5)<br>1.380 (5)<br>1.369 (6)<br>1.517 (6)<br>1.534 (7)<br>1.488 (4)<br>1.341 (5)<br>1.358 (5)<br>1.456 (6)<br>1.322 (7)<br>1.582 (7)<br>1.582 (7) | $\begin{array}{c} C(9) \longrightarrow N(17)\\ C(10) \longrightarrow C(11)\\ C(10) \longrightarrow C(22)\\ C(10) \longrightarrow C(24)\\ C(11) \longrightarrow C(12)\\ C(13) \longrightarrow C(13)\\ C(13) \longrightarrow C(13)\\ C(13) \longrightarrow C(16)\\ C(16) \longrightarrow N(17)\\ N(17) \longrightarrow C(26)\\ C(18) \longrightarrow O(1)\\ C(19) \longrightarrow C(20)\\ C(21) \longrightarrow O(3)\\ C(22) \longrightarrow C(23)\\ C(24) \longrightarrow C(25) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.534 (7)<br>1.539 (5)<br>1.565 (8)<br>1.546 (7)<br>1.380 (6)<br>1.697 (5)<br>1.543 (6)<br>1.505 (8)<br>1.487 (6)<br>1.516 (7)<br>1.458 (8)<br>1.512 (8)<br>1.434 (8)<br>1.517 (10)<br>1.557 (6) |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C(9) - C(14)<br>C(2) - C(1) - C(11)                                                                                                                                                                                                                                                                                         | 1.510 (6)                                                                                                                                                                                                    | C(22)—C(10)—C(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 24) 111.3 (4)                                                                                                                                                                                    |
| C(1) - C(2) - C(3)                                                                                                                                                                                                                                                                                                          | 122.3 (4)                                                                                                                                                                                                    | C(1) - C(11) - C(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2) 115.4 (3)<br>0) 124.8 (4)                                                                                                                                                                     |
| C(2) - C(3) - O(4)                                                                                                                                                                                                                                                                                                          | 110.8 (3)                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 124.0(4)<br>121 1104(4)                                                                                                                                                                          |
| C(2) = C(3) = O(1)                                                                                                                                                                                                                                                                                                          | 124.0 (4)                                                                                                                                                                                                    | C(10) - C(11) - C(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12) 113.4(4)<br>1) 124 0(4)                                                                                                                                                                      |
| C(3) - C(3) - C(12)                                                                                                                                                                                                                                                                                                         | 119 3 (4)                                                                                                                                                                                                    | C(4) - C(12) - C(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1) 124.9(4)<br>3) 1084(3)                                                                                                                                                                        |
| C(3) - C(4) - O(2)                                                                                                                                                                                                                                                                                                          | 127 3 (3)                                                                                                                                                                                                    | C(1) - C(12) - C(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13) $1267(3)$                                                                                                                                                                                    |
| C(12) - C(4) - O(2)                                                                                                                                                                                                                                                                                                         | 113 3 (3)                                                                                                                                                                                                    | C(12) - C(13) - C(13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1012(3)                                                                                                                                                                                          |
| C(6) - C(5) - C(13)                                                                                                                                                                                                                                                                                                         | 111.3 (3)                                                                                                                                                                                                    | C(12) - C(13) - C(13 | 14) 104.2 (3)                                                                                                                                                                                    |
| C(6) - C(5) - C(19)                                                                                                                                                                                                                                                                                                         | 109.6 (4)                                                                                                                                                                                                    | C(12) - C(13) - C(13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15) 109.1 (4)                                                                                                                                                                                    |
| C(6) - C(5) - O(2)                                                                                                                                                                                                                                                                                                          | 109.3 (3)                                                                                                                                                                                                    | C(5) - C(13) - C(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4) 117.6 (4)                                                                                                                                                                                     |
| $C(13) \rightarrow C(5) \rightarrow C(19)$                                                                                                                                                                                                                                                                                  | 117.5 (4)                                                                                                                                                                                                    | C(5) - C(13) - C(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5) 112.0 (3)                                                                                                                                                                                     |
| C(13) - C(5) - O(2)                                                                                                                                                                                                                                                                                                         | 104.2 (3)                                                                                                                                                                                                    | C(14)-C(13)-C(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 15) 111.7 (3)                                                                                                                                                                                    |
| C(19)-C(5)-O(2)                                                                                                                                                                                                                                                                                                             | 104.4 (3)                                                                                                                                                                                                    | C(8)-C(14)-C(9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ) 123.9 (4)                                                                                                                                                                                      |
| C(5)-C(6)-O(3)                                                                                                                                                                                                                                                                                                              | 110.5 (3)                                                                                                                                                                                                    | C(8)-C(14)-C(1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3) 122.3 (4)                                                                                                                                                                                     |
| C(5)-C(6)-C(7)                                                                                                                                                                                                                                                                                                              | 123.3 (4)                                                                                                                                                                                                    | C(9)-C(14)-C(1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3) 111.2 (4)                                                                                                                                                                                     |
| C(7)—C(6)—O(3)                                                                                                                                                                                                                                                                                                              | 125.6 (4)                                                                                                                                                                                                    | C(13)-C(15)-C(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 16) 111.7 (4)                                                                                                                                                                                    |
| C(6)—C(7)—C(8)                                                                                                                                                                                                                                                                                                              | 121.8 (4)                                                                                                                                                                                                    | C(15)—C(16)—N(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 17) 112.6 (5)                                                                                                                                                                                    |
| C(7)—C(8)—C(14)                                                                                                                                                                                                                                                                                                             | 121.0 (4)                                                                                                                                                                                                    | C(9)—N(17)—C(1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6) 111.5 (3)                                                                                                                                                                                     |
| C(10) - C(9) - C(14)                                                                                                                                                                                                                                                                                                        | 111.1 (3)                                                                                                                                                                                                    | C(9)-N(17)-C(2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6) 109.4 (4)                                                                                                                                                                                     |
| C(10) - C(9) - N(17)                                                                                                                                                                                                                                                                                                        | 114.3 (4)                                                                                                                                                                                                    | C(16)—N(17)—C(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 26) 113.0 (5)                                                                                                                                                                                    |
| C(14) - C(9) - N(17)                                                                                                                                                                                                                                                                                                        | 108.0 (4)                                                                                                                                                                                                    | C(5)—C(19)—C(2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0) 114.3 (4)                                                                                                                                                                                     |
| C(9) - C(10) - C(11)                                                                                                                                                                                                                                                                                                        | 111.3 (3)                                                                                                                                                                                                    | C(10)—C(22)—C(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 23) 117.4 (5)                                                                                                                                                                                    |
| C(9)—C(10)—C(22)                                                                                                                                                                                                                                                                                                            | 104.0 (4)                                                                                                                                                                                                    | C(10)—C(24)—C(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25) 113.9 (5)                                                                                                                                                                                    |
| C(9) - C(10) - C(24)                                                                                                                                                                                                                                                                                                        | 111.7 (4)                                                                                                                                                                                                    | C(3)-O(1)-C(18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ) 116.4 (4)                                                                                                                                                                                      |
| C(11) - C(10) - C(22)                                                                                                                                                                                                                                                                                                       | 106.8 (4)                                                                                                                                                                                                    | C(4)O(2)C(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 107.6 (3)                                                                                                                                                                                        |
| C(11)—C(10)—C(24)                                                                                                                                                                                                                                                                                                           | 111.4 (4)                                                                                                                                                                                                    | C(6)-O(3)-C(21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ) 116.1 (3)                                                                                                                                                                                      |



Fig. 1. ORTEP plot (Johnson, 1970) of the title compound. Boundary surfaces are drawn to enclose 50% probability.

of the adjacent two H(16) protons (Chivers & Crabb, 1970), which changes from approximately 13 to 14.5 Hz. The lower field position found for  $H(16)_{ax}$ may be explained by the deshielding effect of the N-atom lone pair. No explicit effects can be given for the change of the position of H(15)ea; minor structural changes in the morphinan skeleton are probably involved. A rather strong hydrogen bond exists: the N(17)···Cl and H(171)···Cl distances are 3.020(5)and 2.16 (6) Å, respectively. The N(17)—H(171)···Cl angle is 140 (3)°. The plane of the aromatic ring and the ring formed by the atoms C(5) through C(8), C(13) and C(14) are nearly planar. The maximum deviations from the least-squares planes are 0.05 [C(12)] and 0.10 Å [C(5)]. The 3- and 6-methoxy groups are out of these ring planes: C(4)-C(3)-O(1)—C(25) and C(7)—C(6)—O(3)—C(24) torsion angles are 36.6 and 5.5°, respectively.

### References

- BENTLEY, K. W. (1971). *The Alkaloids*, Vol. XIII, edited by R. H. F. MANSKE, pp. 75–123. New York: Academic Press.
- BODEN, R. M., GATES, M., HO, S. P. & SUNDARARAMAN, P. (1982). J. Org. Chem. 47, 1347–1349.
- CHIVERS, P. J. & CRABB, T. A. (1970). Tetrahedron, 26, 3389–3399. CRABB, T. A. & KATRITZKY, A. R. (1984). Adv. Heterocycl. Chem. 36, 1–173.
- DARLING, S. D., KOLB, V. M., MANDEL, G. S. & MANDEL, N. S. (1982). J. Pharm. Sci. 71, 763-767.
- GERMAIN, G., MAIN, P. & WOOLFSON, M. M. (1971). Acta Cryst. A27, 368-376.
- GYLBERT, L. (1973). Acta Cryst. B29, 1630-1635.
- JOHNSON, C. K. (1970). ORTEP. Report ORNL-3794, revised. Oak Ridge National Laboratory, Tennessee, USA.

STEWART, J. M., KRUGER, G. J., AMMON, H. L., DICKINSON, C. W. & HALL, S. R. (1972). The XRAY72 system – version of June 1972. Tech. Rep. TR-192. Computer Science Center, Univ. of Maryland, College Park, Maryland, USA.  WOUDENBERG, R. H., LIE, T. S. & MAAT, L. (1990). Recl Trav. Chim. Pays-Bas, 109, 353-357.
WOUDENBERG, R. H., OOSTERHOFF, B. E., LIE, T. S. & MAAT, L.

(1992). Recl Trav. Chim. Pays-Bas, 111, 119-125.

Acta Cryst. (1992). C48, 1633-1635

# Acenaphtho[1,2-*a*]acenaphthylene at 178 K

BY PETER G. JONES AND PETER BUBENITSCHEK

Institut für Anorganische und Analytische Chemie der Technischen Universität, Hagenring 30, W-3300 Braunschweig, Germany

### GEORGE M. SHELDRICK

Institut für Anorganische Chemie der Universität, Tammannstrasse 4, W-3400 Göttingen, Germany

### AND GERALD DYKER

Institut für Organische Chemie der Technischen Universität, Hagenring 30, W-3300 Braunschweig, Germany

(Received 2 December 1991; accepted 31 January 1992)

Abstract.  $C_{22}H_{12}$ ,  $M_r = 276.3$ , monoclinic,  $P2_1/c$ , a = 10.946 (4), b = 5.817 (2), c = 10.551 (4) Å,  $\beta = 94.15$  (3)°, V = 670.0 Å<sup>3</sup>, Z = 2,  $D_x = 1.370$  Mg m<sup>-3</sup>,  $\lambda$ (Mo  $K\alpha$ ) = 0.71069 Å,  $\mu = 0.08$  mm<sup>-1</sup>, F(000) = 288, T = 178 K, R = 0.049 for 711 reflections. The molecule possesses crystallographic inversion symmetry and is planar to within 0.004 Å. The molecular strain is apparent, for example, in C—C—C bond angles as high as 141°. The quantitative agreement of bond lengths with those calculated by Dasgupta & Dasgupta [J. Mol. Struct. (1975), **27**, 113–116] is only moderate; in particular, the central C—C bond at 1.390 (5) Å is 0.02 Å longer than predicted.

Introduction. Acenaphtho[1,2-*a*]acenaphthylene is an interesting target for calculations (Bose, 1966; Dasgupta & Dasgupta, 1975) and synthetic studies (Mitchell, Fyles & Ralph, 1977) because of its ring strain and its spectroscopic properties. The semibenzenoid hydrocarbon is rationally and efficiently prepared from 1,8-diiodonaphthalene and acenaphthylene by a new palladium-catalyzed annelation reaction (Dyker, 1991). We have determined the crystal structure in order to characterize the molecular geometry of the hexacyclic  $(4n + 2)\pi$  system and to compare the experimental parameters with calculated values (*op. cit.*).

**Experimental.** Single crystals in the form of red prisms and plates were obtained from chloroform. Intensity data were collected from two crystals, (1)  $0.38 \times 0.24 \times 0.22$  mm, (2)  $0.42 \times 0.40 \times 0.18$  mm, mounted on glass fibres with inert oil and transferred

0108-2701/92/091633-03\$06.00

to the cold gas stream of a Siemens R3 diffactometer with LT-2 low-temperature attachment. Intensities were measured to  $2\theta_{max} = 50^{\circ}$  using monochromated Mo K $\alpha$  radiation. Of 1398 reflections (1), 2356 reflections (2), 1184 were unique ( $R_{int} = 0.038$  after application of a refined scale factor, index ranges h-12 to 13, k 0 to 6, l 0 to 12) and 711 >  $3\sigma(F)$  were considered observed. The cell constants were refined from setting angles of 50 reflections in the  $2\theta$  range  $20-23^{\circ}$ . Three check reflections showed no significant intensity variation. No absorption correction was applied.

The structure was solved by direct methods; the solution with the second best combined figure-ofmerit proved to be correct, the apparently best solution consisting of 'chicken wire'. Full-matrix anisotropic least-squares refinement on F was then performed. H atoms were included using a riding model. The weighting scheme was  $w^{-1} = \sigma^2(F) +$  $0.00025F^2$ ; final R = 0.049, with wR = 0.048; 100 parameters; S = 1.5; maximum  $\Delta/\sigma = 0.001$ , maximum, minimum  $\Delta\rho = 0.16$ ,  $-0.17 \text{ e} \text{ Å}^{-3}$ . The program system used was SHELXTL-Plus (Sheldrick, 1989), which contained the atomic scattering factors and f', f'' values. Final atom coordinates are given in Table 1, with derived bond lengths and angles in Table 2.\*

© 1992 International Union of Crystallography

<sup>\*</sup> Lists of structure factors, anisotorpic thermal parameters and H-atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55118 (6 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: HA0107]